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The host immune response has a critical role not only in protection from human leishmaniasis but also in
promoting disease severity. Although candidate gene approaches in mouse models of leishmaniasis have been
extremely informative, a global understanding of the immune pathways active in lesions from human patients is
lacking. To address this issue, genome-wide transcriptional profiling of Leishmania braziliensis-infected
cutaneous lesions and normal skin controls was carried out. A signature of the L. braziliensis skin lesion was
defined, which includes over 2,000 differentially regulated genes. Pathway-level analysis of this transcriptional
response revealed key biological pathways present in cutaneous lesions, generating a testable ‘metapathway’
model of immunopathology and providing new insights for treatment of human leishmaniasis.
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INTRODUCTION
Leishmania braziliensis has a spectrum of clinical manifesta-
tions, all of which are associated with immunopathology (de
liveira and Brodskyn, 2012). Patients develop small nodules at
the site of infection that progress to chronic ulcerated lesions.
We hypothesize that, although parasite infection acts as an
initial trigger for lesion development, it is the immuno-
pathologic response that determines disease severity. Thus,
defining the host inflammatory pathways within leishmania
lesions is crucial for the development of new treatment
modalities.

Many studies have examined the systemic immune response
in L. braziliensis-infected patients, and show that cells from
patients release pro-inflammatory molecules in response to
leishmania antigen (Bottrel et al., 2001; Follador et al., 2002;
Vargas-Inchaustegui et al., 2010). These responses likely con-
tribute to both the control of the parasites and the pathologic

inflammatory response in the lesions (Bosque et al., 1998;
Bacellar et al., 2002; de Oliveira and Brodskyn, 2012;
Giudice et al., 2012). Although important, these systemic
responses may not reflect what is occurring at the site of
infection. Indeed, recent studies of lesion biopsies from
L. braziliensis patients have revealed an unexpected
pathologic role for CD8 T cells during disease, which would
not have been obvious from studies on systemic responses
(Novais et al., 2013; Santos Cda et al., 2013).

Transcriptome analysis has helped elucidate critical genes
expressed during interactions between leishmania parasites and
human macrophages (Ramirez et al., 2012). In addition, a
genomic profiling has been reported for leishmania lesions from
patients, in which the authors compared cutaneous leish-
maniasis (CL) and mucosal leishmaniasis (Maretti-Mira et al.,
2012). To our knowledge, however, ours is the first report to
dissect the changes that occur in the skin after infection with
leishmania when compared with normal skin. Using a genome-
wide transcriptional analysis, we report on the pathways
present in L. braziliensis lesions and propose a hypothetical
‘metapathway’ of immunopathology that drives disease.

RESULTS
Comparative transcriptomics of L. braziliensis lesions and
normal skin

We performed genome-wide transcriptional profiling on 25
biopsies from L. braziliensis patients (Supplementary Table S1
online) and 10 normal skin biopsies obtained from non-
endemic controls. Principal component analysis (PCA) of the
entire data set showed that principal component 1 (PC1)
accounted for 54.3% of the variation in the data and resolved
samples into two main groups, normal and lesion skin. PC2
accounted for a smaller amount of variation (12.4%) occurring
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within both these groups (Figure 1a). The separation of lesion
and control samples along a single principal component
indicated that differentially expressed genes could be identi-
fied with high statistical confidence.

Analysis of L. braziliensis lesions compared with normal
skin identified 2,028 differentially expressed genes (X2-fold,
false discovery rate p1%) (Figure 1b). Hierarchical clustering
(HC) based on Pearson’s correlation delineated two major
clusters. Cluster 1 comprises 947 genes whose abundance is
decreased in lesions, relative to normal skin. The 10 most
‘‘repressed’’ genes from this cluster include genes associated
with maintenance of skin barrier function, such as keratin-27
(KRT27), filaggrin-2 (FLG2), and dermcidin (DCD) (Figure 1c).
Cluster 2 comprises 1,081 transcripts that were more
abundant in lesions compared with normal skin. The most
strongly ‘induced’ members from this cluster included genes
associated with inflammatory cell recruitment (CXCL9,
CXCL10, and CCL8) and cytotoxicity (GZMA, GZMB, and
GLYN) (Figure 1d).

Functional enrichment and pathway analysis of the L. braziliensis
lesion

We next carried out a functional enrichment analysis using
Gene Ontology (GO) terms (Ashburner et al., 2000). Genes

upregulated in lesions were enriched in GO terms related to
inflammation, host defense, and chemotaxis (Figure 2a). In
contrast, genes downregulated in lesions were associated
primarily with fatty acid metabolism and epidermal develop-
ment (Figure 2a). This enrichment analysis suggests that lesion
development is associated with a remodeling of the local skin
environment, marked by induction of a potent pro-inflamma-
tory signature and a concomitant loss of epidermal and fatty
acid metabolic signatures. Although useful for identifying
general functional categories, GO enrichment analysis is
biased in that it requires a relatively arbitrary selection of
differentially expressed genes as input. Therefore, using gene
set enrichment analysis (GSEA) analysis we leveraged manu-
ally curated pathway databases, including Reactome, Kyoto
Encyclopedia of Genes and Genomes, Biocarta, and the
Pathway Interaction Database (Nishimura, 2001; Vastrik
et al., 2007; Schaefer et al., 2009; Kanehisa et al., 2014), to
identify the key pathways enriched in lesions. Despite our
finding that over 2,000 genes were differentially regulated in
the L. braziliensis lesion, pathway analysis showed that much
of this transcriptional response could be explained by a small
number of pathways (Figure 2b). GSEA results confirmed a
potent repression of fatty acid metabolism in the L. braziliensis
lesion. To further investigate this altered metabolic profile, we
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examined all genes known to be involved in either cholesterol
or triglyceride and free fatty acid metabolism (Supplementary
Figure S1 online). Interestingly, we identified a global repres-
sion of both cholesterol and free fatty acid biosynthesis
(Supplementary Figure S1c—d online), and a significant increase
in expression of lipid exporters (Supplementary Figure S1e–f
online), suggesting that L. braziliensis lesions are characterized
by dysregulated lipid biosynthesis. In contrast, lesions showed
marked induction of at least five key pathways. As expected,
cytotoxicity and pathways involved in the generation of
reactive oxygen species were strongly induced in the
L. braziliensis lesion (Novais et al., 2013, 2014). In addition,
this analysis identified at least three other pathways associated
with the lesion transcriptome: (1) antigen processing and
immunoproteasome activation; (2) nucleic acid sensing; and
(3) inflammasome activation and apoptosis.

Identification of unique and conserved pathways associated with
skin lesion disease

Our data identified core pathways associated with the
L. braziliensis lesion; however, it remained an open question
as to whether they were a common feature of skin inflamma-
tion. To address this question, we compared our data with
similar transcriptomic data generated from human psoriasis
lesions (Figure 3). With the use of data obtained from 334
paired microarrays from lesion and non-lesion sites in 167
patients (Tian et al., 2012), we quantitatively compared the
enrichment of pathways in leishmania lesions with psoriasis

(Figure 3). As expected, only the L. braziliensis lesion was
enriched for ‘‘JAK/signal transducer and activator of transcrip-
tion signaling’’, the ‘‘IFN-g pathway’’, and the ‘‘Leishmania-
sis’’ Kyoto Encyclopedia of Genes and Genomes pathway, all
of which include genes well known to be critical mediators of
protection from this parasite. In addition, L. braziliensis lesions
were uniquely enriched for ‘‘NK-mediated cytotoxicity’’ and
‘‘allograft rejection’’, whereas our analysis showed that the
‘‘graft versus host disease’’ is enriched in both diseases.
However, we found it to be much more strongly enriched in
L. braziliensis lesions, suggesting that this pathologic response
is a dominant feature of CL. Similarly, this analysis also
identified inflammasome activation as a major pathway
activated in L. braziliensis lesions but not in psoriasis. Several
pathways were preferentially enriched in psoriasis and pri-
marily included cell proliferation and nucleotide metabolism.
Finally, several pathways were enriched in both diseases,
including IFN-a/b signaling, nucleotide-binding and oligomer-
ization domain-like receptor signaling, cytosolic DNA sensing,
defensins, and regulation of apoptosis. Taken together, this
comparison indicates that L. braziliensis induces a molecular
signature of disease distinct from psoriasis.

Early- and late-stage lesions are transcriptionally
indistinguishable
Lesions from L. braziliensis patients could be classified into
two categories based on the clinical stage of the disease,
termed early and late (Figure 4 and Supplementary Table S1
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online). Patients with early lesions had a small papule with no
evident ulceration, a median lesion size of 38 mm2 (Figure 4a),
and an illness duration of p30 days (Figure 4b). In contrast,
patients with late lesions had an illness duration of X30 days,
with ulcerated lesions with a median size of 250 mm2. Despite
these marked differences, PCA of the entire transcriptome
(data not shown) and an HC of the differentially expressed
genes failed to resolve early- and late-stage lesions as
transcriptionally distinct disease states (Figure 4c). In addition,
our analysis failed to find any significant differentially
expressed genes between the two lesion stages, even when
less stringent cutoffs were used (fold change¼1.5 and
Pp0.05) (data not shown). The observation that L. braziliensis
lesions at different clinical stages are indistinguishable by gene
expression and pathway analysis (data not shown) reveals that
the key pathways associated with L. braziliensis lesions are
evident well before the development of ulcerated skin lesions,
and therefore may be promoting cutaneous pathology, rather
than simply arising as a consequence of disease.

Identification of genes associated with a molecular signature of
skin pathology

We next sought to identify gene signatures that contributed
to patient-to-patient variability in the lesion transcriptome.

A PCA was carried out using only the 2,028 differentially
expressed genes from lesion samples. PC1 accounted for
35.2% of the variability within the group of lesion samples,
followed by 11.1% in PC2 (Figure 5a), and PC1 and PC2
together explained almost half of the variation between
patients’ samples. This analysis showed that patients varied
in their induction of this transcriptional program, but this
variation was independent of age, sex, drug sensitivity (data
not shown), and lesion stage (Figure 5a). To determine which
genes had the strongest influence on these two principal
components, and therefore contributed the most to variability
in the lesion transcriptome between patients, we plotted the
PCA ‘scores’ from all differentially expressed genes for PC1
and PC2 (Supplementary Figure S2 online). This analysis
identified a subset of immune and skin barrier function genes,
whose expression is variable across the patients. A subset of
immune genes and skin barrier genes (Supplementary Figure
S2 online) from our PCA score plot was selected for correla-
tion analysis (Figure 5b). As expected, there was a strong
positive correlation between functionally related genes
(Figure 5b), such as components of the cytolytic granule
(GZMB, GNLY, and PRF1) (Figure 5b), meaning that patients
with high levels of granzyme B transcript in the lesion often
had high levels of granulysin and perforin. In contrast, the
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cytolytic genes and components of the inflammasome, as well
as IL8 and LAG3, showed a strong negative correlation with
skin barrier genes such as filaggrin-1 and -2 and loricrin (FLG,
FLG2, and LOR) (Figure 5b). Indeed, the more GLNY
(Figure 5c) or IL1B (Figure 5d) expressed in a lesion, the less
FLG or LOR expressed. We also observed a negative correla-
tion between the expressions of AIM2 and LOR (data not
shown). This inverse correlation between immune genes and
skin barrier genes was not a general relationship seen with just
any strongly induced immune effector gene, as there was no
significant correlation between the expression of NCF1 and
skin barrier genes (Figure 5e). Taken together, these results
show that patients exhibit variability in induction of specific
genes and that a subset of these genes is associated with a
more severe molecular signature of skin pathology.

DISCUSSION
Here, we identified key immunological pathways induced
following infection and developed a putative model explain-
ing immunopathology in L. braziliensis lesions (Figure 6).
Activation of CD8 T cells requires recognition of antigens

presented via major histocompatibility complex class I, and
the immunoproteasome has an important role in this process
(Groettrup et al., 2010). We hypothesize that immuno-
proteasome activation drives cytolytic CD8 T cells in the
skin. As cell death leads to the release of danger-associated
molecular patterns (DAMPs), we propose that DAMPs act as a
positive feedback that potentiates CD8 T–cell (Bonilla et al.,
2012; Kim et al., 2014) and inflammasome (Latz et al., 2013)
activation. The inflammasome has been implicated in detri-
mental responses to several inflammatory diseases (Davis
et al., 2011), and its definitive role in human leishmaniasis
is still unclear. Finally, the most highly induced genes,
CXCL10 and CXCL9, are chemokines that recruit T cells,
and we propose that excessive expression of these chemokines
brings more CD8 T cells to the skin, thereby exacerbating
immunopathology.

Genes associated with the development and function of
T helper type 1 (Th1) responses were highly expressed in
L. braziliensis lesions, whereas genes associated with Th2
(Novais et al., 2014) or Th17 responses (data not shown) were
not induced. This contrasts with the observations that Th2 and
Th17 responses are induced in mucosal disease (Boaventura
et al., 2010; Maretti-Mira et al., 2012). Our results are con-
sistent with the strong Th1 response observed systemically in
CL patients (Carvalho et al., 2012). Several genes downstream
of IFN-g were upregulated and may contribute to pathology.
These data show an increased expression of immuno-
proteasome genes in CL, which helps in generating major
histocompatibility complex class I epitopes from the parasite
and ultimately increase CD8 T–cell activation. Also, studies
indicate that the immunoproteasome contributes to inflamma-
tion (Muchamuel et al., 2009) and CD8 T–cell survival
(Moebius et al., 2010). In addition to immunoproteasome-
related genes, IFN-g also induces expression of CXCL10 and
CXCL9, both of which recruit activated T cells and NK cells
(Dufour et al., 2002). Therefore, we propose that, in addition
to its well-known function in parasite control (Kaye and Scott,
2011), IFN-g participates indirectly in immunopathological
responses in L. braziliensis infection by inducing the
recruitment of CD8 T cells and NK cells to the skin and
triggering cytotoxicity by stimulating the immunoproteasome
activation and antigen presentation to CD8 T cells.

We found that cytotoxicity is one of the main signatures of
disease induced by L. braziliensis, a finding consistent with a
previous study performed with a smaller number of samples
(Novais et al., 2013). Although we find Th1 responses induced
in lesions, the dominance of the cytolytic pathway is evident
when one compares the fold change in IFNG and GZMB
expression between normal skin and leishmanial lesions. As
expected, IFNG is increased in expression (8.8 fold change)
(Novais et al., 2014), but GZMB has a significantly higher fold
change (50.9) (Novais et al., 2013). In L. braziliensis patients’
lesions, CD4 but not CD8 T cells produce IFN-g, and thus the
main function of CD8 T cells in the lesions of patients appears
to be cytotoxicity (Santos Cda et al., 2013). We found that
cytotoxic CD8 T cells mediated immunopathology in mice,
but the mechanism by which cytotoxicity enhanced disease
was unclear (Novais et al., 2013). In light of our transcriptome
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analysis, we now hypothesize that the increased pathology
mediated by CD8 T cells is due to activation of the
inflammasome by release of DAMPs.

Activation of the inflammasome generates mature IL-1b,
which promotes increased inflammation by stimulating the
production of chemokines, such as IL-8, and also matrix
metalloproteinases, which degrade the extracellular matrix
leading to more damage to the skin. Our study indicates that
genes associated with the inflammasome pathway (such as
IL1B, AIM2, NLRP3, CASP1, and CASP5) are highly expressed
in L. braziliensis lesions, suggesting that there is inflamma-
some activation and secretion of IL-1b during disease. In fact,
ex vivo-cultured human L. braziliensis lesions release IL-1b
protein into culture supernatants (Carvalho et al., unpublished
data). However, the role that the inflammasome and subse-
quent IL-1b have in human disease is still unclear. IL-1b
mRNA was previously found in lesions from L. braziliensis
patients (Pirmez et al., 1993), and in individuals infected with
L. mexicana IL-1b production has been linked to disease
severity (Fernandez-Figueroa et al., 2012). Here, we expand
those results by demonstrating that genes associated with two
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inflammasome pathways, AIM2 and NLRP3, are upregulated
in lesions and thus may have a previously unappreciated role
in L. braziliensis human disease.

Skin diseases can share some characteristics. For example,
dysbiosis of the skin has recently been considered a distinctive
feature of both CL and psoriasis (Cho and Blaser, 2012; Naik
et al., 2012). In addition, IFN-g has been associated with
immunopathology in both diseases, although by different
mechanisms. In L. braziliensis infection, IFN-g is thought
to induce immunopathology by activating innate cells.
In psoriasis, IFN-g synergizes with other pro-inflammatory
cytokines, notably IL-17, and induces activation of keratino-
cytes. Although Th17 responses have been implicated in
L. braziliensis infection in mucosal leishmaniasis (Boaventura
et al., 2010; Maretti-Mira et al., 2012), we could not detect
differences in IL-17 transcripts in L. braziliensis patients,
suggesting that, unlike psoriasis, L. braziliensis CL is not asso-
ciated with a Th17 response. Our comparison of pathways
enriched in these two diseases revealed additional differences.
For example, although cytotoxicity has been implicated
in both leishmaniasis (Novais et al., 2013) and psoriasis
(Yawalkar et al., 2001; Prpic Massari et al., 2007), our data
show that cytotoxicity is a more pronounced signature in
L. braziliensis infection.

A surprising finding of our study was that the transcriptional
profile of non-ulcerated lesions was similar to those of patients
with ulcerated lesion. This result suggests that, early after
infection, inflammatory pathways are activated in the skin,
which may explain why lesions often develop despite early
detection and treatment (Machado et al., 2002). Although our
data are based on a fraction of the total lesion, as biopsies
were collected from the border of the ulcer, we believe the
results appropriately reflect the ongoing immune response as
the ulcer is mainly composed of dead cells. As disease
signatures are present before the ulcer develops, our data
position cytotoxicity, immunoproteasome, and inflammasome
as potential causes of lesion development, rather than as
simply arising as consequence of disease.

Therapies that target the inflammatory response, without
affecting mechanisms that kill the parasites, would be an ideal
adjunct to drug treatment in leishmaniasis. Here, we have
identified a hypothetical metapathway that leads from CD8
T–cell activation and cytolysis to IL-1b production. As cyto-
toxicity does not control L. braziliensis parasites (Novais et al.,
2013; Santos Cda et al., 2013), nor does IL-1b appear to be
protective in humans (Fernandez-Figueroa et al., 2012),
blocking the major components of this metapathway should
limit pathology without affecting parasite control.

MATERIALS AND METHODS
Ethics statement

This study was conducted according to the principles specified in the

Declaration of Helsinki and under local ethical guidelines, and this

study was approved by the Ethical Committee of the Federal

University of Bahia (Salvador, Bahia, Brazil)(010/10) and the Uni-

versity of Pennsylvania IRB (Philadelphia, PA) (813390). All patients

provided written informed consent for the collection of samples and

subsequent analysis.

Patients and biopsies
All CL patients were seen at the health post in Corte de Pedra, Bahia,

Brazil, which is a well-known area of L. braziliensis transmission. The

criteria for diagnosis were a clinical picture characteristic of CL in

conjunction with parasite detection or a positive delayed-type

hypersensitivity response to leishmania antigen. Prior to therapy,

biopsies were collected at the border of the lesions using a 4-mm

punch before therapy. Normal skin samples were taken from

volunteers who were living in a non-endemic area without a history

of leishmaniasis.

Transcriptional profiling and functional enrichment analysis
Microarrays and data analyses were carried out as previously

described (Beiting et al., 2014). Briefly, Illumina HumanHT-12

version-4 beadchips (Illumina, San Diego, CA) were hybridized

with biotin-labeled cRNA generated from 10 normal skin, 8 early,

and 17 late lesion samples. Data analyses were carried out using the

statistical computing environment, R (v3.0.2), the Bioconductor suite

of packages for R, and RStudio (v0.97; Boston, MA). Probesets that

were differentially regulated X2-fold (false discovery rate p1%), after

controlling for multiple testing using the Bonferroni–Hochberg

method (Reiner et al., 2003), were used for HC and heatmap

generation. Data have been deposited on the GEO database for

public access (GSE# GSE55664). GSEA (Mootha et al., 2003;

Subramanian et al., 2005) was carried out using the Broad

Institute’s MSigDB (v4.0) and either the GSVA bioconductor

package (Figure 2) (Hanzelmann et al., 2013) or the GSEA

preranked tool (Figure 3) to query the ‘‘C2: Canonical Pathways’’

collection in the MSigDB, which consists of 1,310 gene sets, or

‘‘signatures’’, representing annotated pathways.

Comparison of L. braziliensis and psoriasis lesion transcriptomes

L. braziliensis data were compared with the MAD-3 human psoriasis

data set (Tian et al., 2012), a meta-analysis of three independent

psoriasis gene expression studies including 334 paired samples (lesion

and non-lesion biopsies) from 167 patients (Yao et al., 2008;

Gudjonsson et al., 2009; Suarez-Farinas et al., 2012). The MAD-3

data set was first filtered to remove nonspecific Affymetrix probesets

(probeset identifiers ending in ‘‘_x_at’’). Genes with multiple

probesets were used to calculate a mean fold change relative to

non-lesion controls. A total of 17,061 genes in common between the

psoriasis MAD-3 data set and our L. braziliensis lesion data were used

for carrying out a competitive GSEA analysis. Both data sets were rank

ordered by Log2 fold change in expression between lesion and

control and used as input for the GSEA preranked algorithm (Mootha

et al., 2003; Subramanian et al., 2005). GSEA results were explored

using the network analysis software Cytoscape (Cline et al., 2007;

Smoot et al., 2011) and the Enrichment Map plugin (Merico et al.,

2010), in order to identify common and unique pathways.
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