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ABSTRACT As access to high-throughput sequencing technology has increased, the
bottleneck in biomedical research has shifted from data generation to data analysis.
Here, we describe a modular and extensible framework for didactic instruction in
bioinformatics using publicly available RNA sequencing data sets from infectious dis-
ease studies, with a focus on host-parasite interactions. We highlight lessons learned
from adapting this course for virtual learners during the coronavirus disease 2019
(COVID-19) pandemic.
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The demand is high for instructional resources that effectively engage traditional
“bench” biologists in learning bioinformatics. Since genome-wide transcriptional

profiling was first carried out in yeast over a decade ago (1), RNA sequencing (RNA-
seq) has become a widely used tool for addressing many questions in studies of host-
pathogen interactions (2–6). Unfortunately, in our experience, most didactic instruction
for RNA-seq data analysis occurs in the context of general workshops or short courses
that use toy data sets and that are often not structured in a way that affords sufficient
time to teach best practices for coding. In 2015, we began a semester-long course with
the goal of empowering students to take a “do-it-yourself” (DIY) approach to learning
transcriptomics using the R programming environment and the Bioconductor suite of
software packages. Over the past 6 years, we have refined this course to create a compre-
hensive, fully virtual, and open-source set of resources suitable for learners ranging from
high school students to graduate students and postgraduate professionals. To facilitate
broad access, all teaching materials are freely available at https://diytranscriptomics.com.

Several hardware and software developments make this an opportune time for cur-
riculum development with RNA-seq data as the focal point: (i) the discontinuation of
major sequencing platforms from Applied Biosystems (SOLiD) and Roche (454 pyrose-
quencing) beginning around 2013 left Illumina’s sequencing by synthesis the domi-
nant technology, allowing instructors to focus on a single platform and nomenclature
(7); (ii) the development of lightweight “pseudoalignment” algorithms allows read
mapping to be carried out with modest computing resources, obviating the need to
teach students how to communicate with a centralized computing cluster as a prereq-
uisite for data analysis and allowing students to run alignments directly on their lap-
tops, oftentimes in the span of a single class (8, 9); (iii) these efficient algorithms, to-
gether with troves of publicly available RNA-seq data, have catalyzed efforts that
enable command-line access to data from hundreds of thousands of samples (10, 11);
(iv) the community of computational biologists using R has grown tremendously, and
its growth has engendered a rich and integrated user interface (12, 13); and (v) there
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have been major developments in easy-to-use interactive graphics, dynamic reports,
and Web apps in the R environment, making it easy for students to turn static plots
into dynamic data visualizations (14).

Parasites are ideal tools for studying gene expression. Analysis of host-parasite
gene expression data provides an excellent opportunity to teach fundamental con-
cepts in both parasitology and immunology. Parasite life cycles involve complex devel-
opmental transitions that coincide with remarkable alterations in gene expression, and
new single-cell technologies enable high-resolution profiling of these life cycles. RNA-
seq data sets from different developmental stages provide learners with insight into
mechanisms of host cell invasion, immune evasion, parasite maturation, sexual differ-
entiation, and reproduction. In addition, parasites trigger robust immune and tissue
repair responses in their hosts, providing an opportunity to move beyond parasite biol-
ogy to consider and discuss how pathogens elicit immune responses and what the
consequences of these responses may be for the outcome of infection and the devel-
opment of pathological responses. To take full advantage of this concept, our course
includes data-driven virtual labs derived from real infectious disease studies. Each lab
was designed to highlight fascinating and unique aspects of host-pathogen biology,
including “just-in-time” gene expression during the erythrocytic cycle of Plasmodium
falciparum, the helminth response to praziquantel treatment, the expression of micro-
exon genes in Schistosoma mansoni, the activation of canonical antiviral responses by
some intracellular protozoa, parasite strain-specific polarization of macrophages via
Toxoplasma gondii secreted virulence factors, and immune activation during severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.

A modular approach to teaching coding. The course is organized into 13 to 16 2-
h modules, each of which includes lecture videos and slides, learning objectives, R
scripts, and reading materials. As learners move through these modules, simple “step”
scripts facilitate the construction of a complete RNA-seq analysis pipeline (Fig. 1).
Currently, eight step scripts are provided, which include code for data preprocessing
(steps 1 and 2), data visualization (step 3), accessing public data (step 4), carrying out
differential gene expression (DGE) analysis (steps 5 and 6), using functional enrichment
methods such as gene ontology (GO) and gene set enrichment analysis (GSEA) (step
7), and bundling code and outputs into dynamic Rmarkdown documents for transpar-
ency and reproducibility (step 8). This approach provides an opportunity to introduce
statistical concepts in the context of real challenges that commonly arise during data
analyses. For example, the module on data exploration introduces learners to

FIG 1 Complex workflows broken into modular “step” scripts. Learners progress through the course using a series of R step scripts. This process
incrementally builds a computational workflow and culminates in learners producing an Rmarkdown report that summarizes all code and outputs from the
course. Blue boxes indicate module topics covered in detail in the course. White boxes indicate topics discussed but not covered in detail. Red text
denotes R packages used throughout the course, while black text denotes Web-based or command-line tools outside the R/Bioconductor environment.
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experimental design considerations and to multivariate statistics and dimensional
reduction as critical methods for identifying biological and technical sources of var-
iance. Similarly, multiple-testing correction, linear models, and Bayesian inference
become key concepts in the differential gene expression module. The course website
contains additional reading material and supplemental videos for learners who want
to explore these and other statistical concepts in more depth or for instructors who
wish to dedicate additional lecture time to statistics.

At numerous points in this workflow, learners develop publication-quality graphics,
opening the door to conversations about design aesthetics and crafting a narrative with
genomic data. The course concludes by bundling all steps into an Rmarkdown document,
providing an important context to discuss transparency and reproducibility in bioinfor-
matics. To further emphasize the latter point, one module is dedicated to instruction on
how to archive projects using GitHub and how to incorporate code into custom functions
and R packages for reuse. Since all steps use the R programming language, learners build
confidence and skills in coding as they progress through the course.

The modular structure of the course and stepwise nature of the coding not only
accommodate learners with no prior experience in either RNA-seq or coding but also
make it easy for instructors to modify the course content to include additional modules
on statistics, related data types such as assay for transposase-accessible chromatin
(ATAC-seq), or emerging technologies such as spatial transcriptomics. The next iteration
of this course, for example, will include lectures and labs that explore single-cell RNA
sequencing data from parasites and pathogen-infected host cells, to explore concepts
around parasite development and host-pathogen interactions, respectively. Finally, many
aspects of the course are generalizable well beyond transcriptomics data, and it would be
feasible to adapt the course to focus on different ‘omic data types, including but not lim-
ited to microbiome profiling.

Lessons learned from the COVID-19 pandemic. The coronavirus disease 2019
(COVID-19) pandemic had a dramatic and abrupt impact on in-person instruction at
schools around the world and underscored a desperate need for high-quality, free,
online educational content for biomedical trainees. To help meet this need, we modified
our course to be run virtually for a full semester starting in April 2020. Although the
course had a strong online presence since its inception in 2015, the pandemic acceler-
ated a move to make the course completely virtual. Several advantages of this move
became immediately apparent. First, in-person bioinformatics courses often require spe-
cialized “active learning” media classrooms that offer numerous power outlets for laptop
computers, round tables for group work, and multiple display screens for improved visi-
bility. Such classrooms are difficult to find and are limited in seating. In contrast, shifting
our course online allowed us to double the class size from about 60 students to 120 stu-
dents. Teaching assistants that once perused the classroom now monitored a class mes-
sage board (Slack) for student questions and held virtual recitations via video conferenc-
ing software (Zoom). Similarly, labs were run via video conferencing using “breakout
room” features to randomly split the;120 students into small groups of 3 to 5 students.
Teaching assistants and the instructor then circulated through each virtual breakout
room to field questions and assist learners to overcome impediments. The virtual format
also offered maximum flexibility during a time of great stress for learners. Furthermore,
when offered in person, some learners struggled to keep up with modules that involved
a mix of active coding and lecture. In contrast, virtual instruction with prerecorded video
lectures made it simple to pause videos while coding. We also found that learners bene-
fited from speed controls enabled on all videos, thus making it easy to move more
quickly through familiar material while slowing down in more challenging areas.

To empirically test whether the transition from in-person to virtual instruction had a
detrimental impact on the acquisition of skills by learners, we compared results from a
20-question skill self-assessment survey completed by 66 in-person learners from 2019
with responses from 65 virtual learners from 2020 (n=131 learners total) (Fig. 2A). Prior
to starting the course, both in-person and virtual learners reported low confidence in
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FIG 2 Learners show significant acquisition of skills regardless of whether material is delivered in person or via
remote learning. (A) Self-reported data from 131 UPenn students who took the course either in person (n= 66) or
virtually during the COVID-19 pandemic (n= 65). Students were asked to rank their competency in each area on a
scale of 1 to 5, where 1 indicates “absolutely not” confident in a skill and 5 indicates “very confident.” RPKM, reads per
kilobase per million; FPKM, fragments per kilobase per million; TPM, transcripts per million; PCA, principal-component
analysis. (B) Google Analytics report showing the global distribution of over 17,000 users of the DIYtranscriptomics site
since 1 January 2020. The size of the circles reflects site visits. The number of visitors per city is represented by blue
shading of circles and is shown in the color key.
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their understanding of RNA-seq data, using command-line tools, the R programming
language, and general aspects of data science and reproducible coding. After 15 mod-
ules, all students reported significant increases in all areas measured, regardless of
whether they received instruction in person or virtually, demonstrating that the virtual
format did not adversely impact the overall acquisition of skills by learners.
Furthermore, the move to virtual instruction opened the course to learners from
around the world (Fig. 2B). Since January 2020, over 17,000 people have visited the
site. Although the majority originate from IP addresses in and around Philadelphia, PA,
where our university is based, there were many users accessing the site from across
the United States, Europe, India, and South America. By hosting our lecture videos on
Vimeo and collecting detailed analytics on interactions of users with videos, we found
that lectures had been viewed over 33,000 times and watched to completion over
12,000 times by over 4,000 unique viewers worldwide.

Curriculum in the post-COVID-19 era. The apparent success of the virtual format
for this course raises the question of what should be done in a post-COVID-19 era
when schools resume in-person instruction. Should virtual content be maintained? If
the course remains fully virtual, then how would in-person instruction be used, if at all?
These are questions that we and other educators are now wrestling with. Switching
back to in-person instruction at the expense of maintaining strong virtual content not
only would exclude learners from outside our institution but also would make us vul-
nerable yet again to significant disruptions from future local, national, or global emer-
gencies. In contrast, keeping the course fully virtual without an in-person component
ignores both an opportunity and a responsibility to engage students at our institution.
A blended learning model that brings both concepts together offers an appealing solu-
tion. In this model, learners at our institution or elsewhere can watch the videos and
learn asynchronously rather than attending traditional synchronous lectures in a class-
room, while in-person classes focus on the data-driven labs described above (so-called
“flipped classroom”). Lab content will still be made available online, raising the intrigu-
ing possibility of labs that mix in-person with virtual learners in small groups.
Depending on course credit load and classroom size, instructors could opt to require
learners to attend only a portion of the labs in person. Finally, an alternative model,
and one that has spontaneously developed with this course at our institution, relates
to the notion of “nanocourses” (15). Nanocourses are a short-course format that typi-
cally involves small groups of learners (e.g., a peer group from the same graduate pro-
gram or all members of a particular laboratory) taking only a portion of the course,
usually totaling about 5 to 6 h of instruction. The modular structure of our course read-
ily accommodates a nanocourse model, where learners could spend approximately 6 h
covering two modules and a lab.

Extensible curriculum that can be adopted by LMICs. An unexpected outcome of
the nanocourse format described above is that students have found it relatively
straightforward to use their own domain-specific data sets from neurobiology, cell biol-
ogy, and model organisms such as Drosophila and Caenorhabditis elegans. This high-
lights that although currently focused on infectious diseases, the course can be easily
extended to other areas of science, particularly since RNA-seq data are commonplace
across biomedical research. This extensibility proves particularly useful when trying to
engage students in the ever-changing landscape of infectious diseases since new (and
newsworthy) outbreaks in human or veterinary medicine can easily be used as the ba-
sis for developing new data-driven labs. Of great concern is how this type of course
can be successfully deployed to researchers in lower- and middle-income countries
(LMICs) where endemic and emerging infectious diseases are major causes of child-
hood morbidity and mortality. To address this, the entire DIYtranscriptomics course,
even the website itself, is available as a single GitHub repository (https://github.com/
DIYtranscriptomics/DIYtranscriptomics.github.io), making it easy for any instructor to
clone the course, modify the code, and quickly host their own version of the course
with little effort. There remains the challenge of what to do when students do not
have access to laptops with sufficient computing resources to install or run the course
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software. One appealing solution is the availability of containerized software and cloud
computing infrastructure. For example, we have used CodeOcean to bundle all the
course code and data into a reproducible cloud computing environment that requires
only a Web browser and Internet access to run (16). Finally, in many areas of LMICs, a
reliable Internet connection is not available. In these cases, videos can be freely down-
loaded for offline viewing, and the course GitHub repository can be cloned and used
to run a local version of the website. Together, these resources provide multiple
options for learners in LMICs to access rich bioinformatics content for infectious
diseases.
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