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Abstract

Background: The maternal microbiome has emerged as an important factor in gestational health and outcome
and is associated with risk of preterm birth and offspring morbidity. Epidemiological evidence also points to
successive pregnancies—referred to as maternal parity—as a risk factor for preterm birth, infant mortality, and
impaired neonatal growth. Despite the fact that both the maternal microbiome and parity are linked to maternal-
infant health, the impact of parity on the microbiome remains largely unexplored, in part due to the challenges of
studying parity in humans.

Results: Using synchronized pregnancies and dense longitudinal monitoring of the microbiome in pigs, we
describe a microbiome trajectory during pregnancy and determine the extent to which parity modulates this
trajectory. We show that the microbiome changes reproducibly during gestation and that this remodeling occurs
more rapidly as parity increases. At the time of parturition, parity was linked to the relative abundance of several
bacterial species, including Treponema bryantii, Lactobacillus amylovorus, and Lactobacillus reuteri. Strain tracking
carried out in 18 maternal-offspring “quadrads”—each consisting of one mother sow and three piglets—linked
maternal parity to altered levels of Akkermansia muciniphila, Prevotella stercorea, and Campylobacter coli in the infant
gut 10 days after birth.

Conclusions: Collectively, these results identify parity as an important environmental factor that modulates the gut
microbiome during pregnancy and highlight the utility of a swine model for investigating the microbiome in
maternal-infant health. In addition, our data show that the impact of parity extends beyond the mother and is
associated with alterations in the community of bacteria that colonize the offspring gut early in life. The bacterial
species we identified as parity-associated in the mother and offspring have been shown to influence host
metabolism in other systems, raising the possibility that such changes may influence host nutrient acquisition or
utilization. These findings, taken together with our observation that even subtle differences in parity are associated
with microbiome changes, underscore the importance of considering parity in the design and analysis of human
microbiome studies during pregnancy and in infants.
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Introduction
The mammalian microbiome plays a key role in mater-
nal and infant health, and recent studies have
highlighted the value of the maternal microbiome for
predicting the risk of preterm birth [1–3], the leading
cause of neonatal death worldwide [4]. Although the
exact mechanisms by which maternal microbes might
influence pregnancy and offspring health have yet to be
fully defined, studies in mice have begun to provide
clues. For example, microbial metabolites produced in
the maternal gut can be detected in the placenta and
fetal tissues, where they drive postnatal innate immune
development [5]. Similarly, short-chain fatty acids pro-
duced by the maternal microbiome cross the placenta,
where they signal through multiple host pathways to
protect offspring from metabolic disease [6]. Microbes
are also vertically transmitted to offspring during birth
and in the perinatal period, and these early colonizers
can have long-term effects on child development [7–9].
Despite the growing recognition that the maternal
microbiome influences infant health, we currently have a
remarkably poor understanding of the clinical and envir-
onmental factors that can impact the microbiome during
pregnancy.
Maternal parity—the number of previous pregnan-

cies—is associated with increased risk of preterm birth
in humans [10, 11], but studies of parity and health in
humans are often confounded by numerous socioeco-
nomic and psychosocial factors [12]. Since both the ma-
ternal gut microbiome and parity have been identified as
key determinants of gestational health, it is important to
understand whether parity influences the microbiome
during pregnancy. Previous studies in dairy cows have
shown that animals pregnant for the first time (nullipar-
ous) have different uterine and rumen microbiome com-
positions than do animals with only a single prior
pregnancy (primiparous) or two or more previous preg-
nancies (multiparous) [13, 14]. However, it is as yet un-
clear if parity impacts either the maternal gut
microbiome during pregnancy or the microbiome of the
developing offspring.
Elucidating the relationship between microbiome com-

position and pregnancy in human subject research is
challenging. Studies are often characterized by small
sample sizes [15], cross-sectional or sparse longitudinal
sampling [16], and present challenges in controlling for
confounding factors. Interpersonal variation in diet has a
particularly large impact on gut microbiota composition
in human studies [17], and differences in maternal diet
during pregnancy have been shown to influence the in-
fant gut microbiome [18]. Properly controlling for diet
often involves either retrospective studies paired with
self-reported food intake surveys [19], highly controlled
feeding studies [19, 20], or a focus on geographically

distinct populations that differ in dietary practices [21,
22], all of which are made more challenging in preg-
nancy. In addition, studies of pregnancy and the micro-
biome in humans rarely address parity due to limited
numbers of pregnancies in most countries. Large animal
models offer an appealing alternative to human studies
for examining parity. Pigs are commonly used as bio-
medical models of humans due to similarities in anat-
omy and physiology and have provided valuable insight
into functions of the human gut microbiome [23–25].
Here, we describe high-resolution microbiome profiling
during synchronized pregnancy in sows, carried out in a
highly controlled environment, to determine if the
microbiome changes during pregnancy, and whether
parity plays a role in this process.
16S rRNA marker gene sequencing and shotgun meta-

genomics were used to assess the association between
pregnancy and the gut microbiome in a population of
mother sows with parity ranging from zero to seven,
where diet and environment are meticulously controlled.
Maternal fecal samples collected weekly throughout the
114-day gestation, together with samples from piglets
born to these mothers, allowed direct comparisons to be
made between maternal and infant microbiomes. We
observed that (1) the maternal gut microbiome changes
predictably during pregnancy; (2) this remodeling occurs
more rapidly in high-parity animals, compared to their
low parity counterparts; (3) parity is associated with gut
microbiome composition at parturition; and (4) the
composition of the early infant gut microbiome is influ-
enced by parity. Taken together, our results highlight
the importance of considering parity in maternal gut
microbiome studies and suggest that pregnancy history
can shape both the maternal microbiome as well as early
colonization events in offspring, albeit likely by different
mechanisms.

Results
Predictable changes in microbiome composition
throughout pregnancy in the pig
Previous studies examining the microbiome in pigs have
focused either on broad stages of gestation [26], or on
post-natal growth and feed efficiency [27–30]. In order
to understand the extent to which the maternal gut
microbiome is affected during pregnancy in pigs, stool
samples were collected weekly from mother sows begin-
ning at gestational day 34, when pregnancy was first
confirmed by ultrasound, and throughout the full 114-
day gestation. Throughout, we will refer to samples col-
lected on or before day 72 as early pregnancy, and sam-
ples collected prior to day 72 as late pregnancy as this is
halfway through the sampling period and correlates with
the first major shift in microbiome composition. The
resulting 390 stools samples (10–12 per sow) were
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subjected to microbiome profiling by targeted sequen-
cing of the V4 region of the 16S rRNA gene. To leverage
the longitudinal aspect of this data, we trained a super-
vised regression model on all samples from 60% of the
animals to calculate a microbiome maturity index during
pregnancy [31, 32], then tested the model on the
remaining animals. This approach is ideal for longitu-
dinal data because it quantifies the relative rate of
change in microbiome composition over time. Defining
microbiota maturity in such a way has been used to pro-
vide a microbial measure of development and is a useful
tool for classifying microbial states or trajectories that
deviate from expectation [32]. Our model identified a
significant correlation (P < 3.3e−13; R2=0.27) between
the actual versus predicted day of gestation (Fig. 1A).
Despite a trend toward overestimating day of gestation
early in pregnancy and underestimating later, our model
accurately predicted which samples belonged to late-
versus early-term pregnancies. Training the model on
the first six and last six time points independently re-
sulted in a stronger correlation from days 79 to 114 than
from days 37 to 72 (SFig 1A,B), suggesting that more
changes occur later in pregnancy. The families Porphyro-
monadaceae and Muribaculaceae were the most import-
ant taxa for predicting day of gestation (Fig. 1B). To
identify transitions in microbial community structure
during pregnancy, we applied a Dirichlet multinomial
mixtures (DMM), which uses a probabilistic approach to
carry out unsupervised clustering of taxonomic data into
community types. This analysis showed that the gut
microbiome of most sows occupies cluster 1 from the
time that pregnancy is confirmed until day 65 of gesta-
tion, indicating a shared microbiota structure early in
pregnancy (Fig. 1C). However, as animals moved
through pregnancy, the gut microbiome underwent a
shift marked by a departure from cluster 1, evident by
day 72 (Fig. 1C). Treponema and Clostridium sensu
stricto were the most important taxa for clustering gut
microbiota communities by DMM (Fig. 1D and E).
Taken together, the maturity index and DMM analyses
show that the gut microbiome is remodeled during
pregnancy.

Parity modulates the pregnancy-induced remodeling of
the gut microbiome
Although our maturity index and DMM analyses show a
clear predictable change in the microbiome during preg-
nancy, there was still substantial unexplained variation,
as evident from the maturity index R2=0.27. We hypoth-
esized that parity may contribute to some of this vari-
ation. To test this hypothesis, we grouped animals based
on whether they had no prior pregnancies (zero parity,
or nulliparous; 107 samples from 9 animals), 1–3 prior
pregnancies (low parity; 150 samples from 13 animals),

or 4–7 prior pregnancies (high parity; 133 samples from
12 animals). A non-parametric microbial interdepend-
ence test (NMIT) was used to summarize data across all
timepoints into a single microbiome trajectory value of
each individual sow. Principal coordinate analysis
(PCoA) (Fig. 2A; SFig 2) and NMDS (Fig. 2B) of these
data showed that NMIT distances were significantly dif-
ferent between parity groups (Fig. 2C). The greatest dif-
ference in microbiome trajectory occurred between zero
parity (nulliparous) and low parity sows, suggesting that
having even one prior pregnancy was sufficient to im-
pact microbiome trajectory during future pregnancies.
The difference in microbiome trajectories between low
and high parity sows was also significant (Adj. P < 0.05),
albeit less substantial than the difference between nul-
liparous and low parity animals.
To determine how the microbiome trajectory differs

between parity groups, alpha and beta diversity metrics
were compared across parity groups. Shannon alpha di-
versity increased throughout pregnancy across all parity
groups and the rate of change did not depend on parity
(SFig 3). Bray-Curtis beta diversity between each sample
and the day 37 sample from the same animal was calcu-
lated. Both Bray-Curtis (Fig. 2D) and weighted UniFrac
(SFig 4A) showed that nulliparous animals, compared to
their low and high parity counterparts, exhibit a more
subtle but incremental change from day 37 as pregnancy
progresses. In contrast, high parity animals underwent a
more abrupt change from day 37 early in pregnancy with
little or no further change evident throughout. Since
comparing each time point with a single reference likely
fails to capture the magnitude of changes that occur be-
tween time points, we could not rule out that high parity
sows might undergo substantial changes from week to
week throughout pregnancy while remaining consist-
ently different from day 37. To reconcile these interpre-
tations, beta diversity was calculated between each
sample and the previous sample from the same individ-
ual using Bray-Curtis (Fig. 2E) and weighted UniFrac
(SFig 4B). This analysis confirmed that the rate of
change of gut microbiota composition in zero and low
parity animals increases steadily throughout pregnancy,
while high parity animals actually show a decrease over
time, suggesting that as animals have more pregnancies,
remodeling of the gut microbiome occurs more rapidly.
Since the largest differences in microbiome trajectory

occur between zero and high parity animals, we further
investigated the differences between these two groups
over time by repeating the DMM modeling, but with an-
imals grouped by parity. While most animals occupy the
cluster 1 community type at day 37, regardless of
whether they are high (Fig. 2F) or zero parity (Fig. 2G),
high parity sows quickly move out of cluster 1 to occupy
clusters 2, 3, 4, and 5 throughout most of the pregnancy,
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Fig. 1 (See legend on next page.)
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with most of these animals occupying cluster 2 at full-
term. Interestingly, nulliparous sows also leave cluster 1
early in pregnancy but occupy clusters 6, 7, and 8 in-
stead (most in cluster 7 at full-term)—three clusters
rarely, if ever, occupied by high parity sows at any point
during pregnancy (Fig. 2F, G). A spline-fitting model
was applied to the top 5 most important taxa from the
DMM and top 5 from the maturity index. This analysis
showed that the relative abundance of all ten taxa chan-
ged throughout pregnancy and that the relative abun-
dance of Phascolarctobacterium and Rikenellaceae was
significantly associated with parity (SFig 5). Taken to-
gether, the data show that parity influences the gut com-
munity types that develop during pregnancy.

Parity is associated with an altered microbial
environment during the perinatal period
Our DMM analysis suggested that by the end of gesta-
tion, high parity animals had a community type that was
distinct from that of zero parity animals. To better
understand how parity influenced the microbial environ-
ment as animals approached parturition, we carried out
shotgun metagenomic sequencing on a subset of the ani-
mals profiled above, along with their offspring. In total,
18 mother-offspring “quadrads”—each comprising a
mother sow and three of her piglets—were examined, in-
cluding stool from 7 nulliparous sows and 11 high parity
sows at day 37 and at the end of gestation (day 114),
along with rectal swabs collected from 54 piglets at day
10 of life. Bray-Curtis beta diversity was calculated
among high parity sows and between high and zero par-
ity sows at both timepoints. At day 37, parity is only
slightly correlated with beta diversity (P = 0.050; R2=
0.11) (Fig. 3A). Conversely, parity is strongly correlated
with beta diversity by day 114 (P = 9e−4; R2=0.21) (Fig.
3B). To identify the species driving these community
composition differences, differentially abundant taxa
were calculated using linear discriminant analysis
(LEfSe) at both timepoints. Consistent with the beta di-
versity analysis, only two low-abundance taxa were dif-
ferentially abundant between zero and high parity
animals at day 37: Selenomonas bovis and Prevotella

copri, both of which were more abundant among zero
parity animals compared to those of high parity (Fig.
3C). At day 114, six taxa were differentially abundant be-
tween zero and high parity including Methanobrevibac-
ter (unclassified), Porcine type C oncovirus,
Peptostreptococcaceae (unclassified), Treponema bryan-
tii, Lactobacillus amylovorus, and Lactobacillus reuteri
(Fig. 3D). The differences in beta diversity and differen-
tially abundant taxa at each timepoint suggest that the
impact of parity on microbiome composition is modest
early in pregnancy and that parity-associated taxa
emerge later as animals near parturition.

Maternal gut microbiome composition does not predict
early infant gut colonization
Our observation that the sow gut microbiome was influ-
enced by parity, together with recent evidence suggest-
ing that maternal gut microbes are likely candidates for
vertical transmission to offspring [33, 34], prompted us
to characterize the relationship between maternal and
offspring gut microbes. As expected, Bray-Curtis beta di-
versity analysis of metagenomic data from piglets born
to each sow (n = 54) showed that maternal gut micro-
biomes were markedly distinct from those of the piglet
gut (P = 1e−5, R2=0.27), such that the gut microbiome
composition of a sow is more similar to that of other
sows than to that of her infant offspring (SFig 6A). Sur-
prisingly, there was no relationship between the relative
abundance of the dominant species observed in the ma-
ternal sow gut and those in their piglets. Many microbes
present in the piglet gut were completely absent from
the maternal gut and vice versa (SFig 6B), and a linear
regression comparing the relative abundance of the eight
most abundant bacterial taxa in the maternal gut at day
114 to the same taxa in the offspring gut showed no cor-
relation (Adj. P > 0.3) (SFig 7). To explore this in more
detail, we focused on Escherichia coli, which was present
at the high relative abundance in both sows and piglet,
and performed strain tracking using StrainPhlAn [35] to
determine whether the mother and offspring harbored
the same strain. After removing samples for which mul-
tiple E. coli strains were detected and samples for which

(See figure on previous page.)
Fig. 1 Gut microbiota compositional changes during gestation follow several predictable trends. 16S sequencing of fecal samples from 34
mother sows sampled longitudinally during the 114-day gestation reveals several trends in gut microbiota changes. A A maturity index trained
on 60% of the animals and tested on the remaining 40% shows that the amount of time of gestation can be predicted (P = 3.3e−13) with some
accuracy (R2=0.27) using gut microbiota composition data. B The 10 taxa that contributed the most to the accuracy of the maturity index are
shown in order of importance. C Dirichlet multinomial mixtures (DMM) bin samples into one of 8 clusters, each defined by a unique gut
microbiota composition. Days of gestation are on the X-axis, and clusters are labeled on the Y-axis. The total number of samples at each time
point is also labeled on the X-axis. The size of the blue circle is proportional to the number of samples contained in each cluster. Transitions
made by a substantial percentage of individuals (transition frequency >20%) are indicated by lines connecting blue clusters. D The 10 taxa that
contributed the most to the accuracy of the DMM are shown in order of importance. E Heatmap shows the relative abundance of taxa
(normalized across each taxa) for each sample. Samples are grouped by DMM cluster to allow for visualization of the taxa that are enriched or
reduced on average in each DMM cluster
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Fig. 2 (See legend on next page.)
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(See figure on previous page.)
Fig. 2 Parity affects the gut microbiota trajectory during gestation. Clustering each of the 34 individuals by parity (zero = no previous
pregnancies, low = 1–3 previous pregnancies, high = 4–7 previous pregnancies) reveals that parity explains a significant amount of the variation
between gut microbiota trajectories during gestation. A Non-parametric microbial interdependence test (NMIT), which calculates correlations
between each pair of taxa for each individual over time, was performed for each individual. A principal coordinate analysis (PCoA) plot of the
NMIT data shows how the gut microbiota trajectory differs between animals of different parities across the first two axes. B Non-metric
multidimensional scaling (NMDS) plot of the NMIT data depicts the differences between the gut microbiota trajectories, with 95% confidence
intervals displayed as ellipses around each parity bin. C Boxplots depict the differences in NMIT between each individual and each high parity
individual. Boxplots show the median and the first and third quartiles, with whiskers that extend to outliers up to 1.5 times the interquartile
range. The adjusted P values and R2 are shown for each comparison. D Bray-Curtis beta diversity was calculated between each sample and the
day 37 sample from the same individual. E Bray-Curtis beta diversity was calculated between each sample and the previous week’s sample from
the same individual. F Dirichlet multinomial mixtures (DMM) showing only samples collected from high parity animals. G DMM showing only
samples collected from zero parity animals

Fig. 3 Parity is associated with significant differences in the relative abundance of key taxa at the end of gestation. Fecal samples from 18 mother
sows (7 of parity zero and 11 of parities 3–7) were collected at days 37 and 114 of gestation, and shotgun metagenomic sequencing was
performed. Bray-Curtis beta diversity was calculated between each sample and each high parity sample at A the beginning of gestation (day 37
of gestation) and B just prior to delivery (day 114 of gestation). All microbes with average relative abundance >1% across all 36 samples (Adj. P <
0.05) that were differentially abundant between zero and high parity animals at C day 37 and D day 114 are shown. Boxplots show the median
and the first and third quartiles, with whiskers that extend to outliers up to 1.5 times the interquartile range. P values (adjusted for multiple
testing in C and D and R2 are shown where appropriate
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no E. coli was detected, a neighbor-joining phylogeny
confirmed that E. coli strains observed in siblings
are more closely related than E. coli observed in
non-siblings, but also revealed that a mother and
her offspring harbor distinct strains of E. coli (SFig
8). Taken together, these data suggest that the
most abundant early colonizers of the piglet gut
are unlikely to have originated from the maternal
gut.

Maternal parity is associated with altered microbiome
composition in offspring
Our analysis of E. coli strains in metagenomic data from
piglets suggested similarities in gut microbiomes of ani-
mals from the same litter. Indeed, Bray-Curtis beta di-
versity comparing all 54 piglets showed that litter—or
mother to which a piglet is born—is significantly associ-
ated with gut microbiome composition 10 days after
birth and explains more than half of the variation

Fig. 4 Maternal parity is associated with significant differences in offspring gut microbiome composition. Fecal swabs from 3 offspring of each of
the 18 mother sows were collected 10 days after delivery and shotgun metagenomic sequencing was performed. A An NMDS plot shows the
differences in gut microbiome composition across all 54 piglets, as determined by Bray-Curtis distance. Piglets born to the same mother
(representing a unique “litter”) are represented by the same color. Litter is significantly associated with gut microbiome composition (P = 0.001)
and explains most of the variation in gut microbiome composition (R2=0.56). B The NMDS plot comparing the Bray-Curtis dissimilarity between
piglet gut microbiome samples is colored by the parity of the piglet’s mother. Maternal parity is significantly associated with gut microbiome
composition (P = 0.002) and explains 5.7% of the variation in gut microbiome composition (R2=0.057). C All microbes with average relative
abundance >1% across all 54 piglet fecal samples (Adj. P < 0.05) that were differentially abundant between those born to zero and high parity
mothers are shown. Boxplots show the median and the first and third quartiles, with whiskers that extend to outliers up to 1.5 times the
interquartile range. Adjusted P values are shown for each differentially abundant taxa
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between piglet gut microbiomes (P = 0.001, R2=0.56)
(Fig. 4A). These data indicate that, although few taxa are
shared between mother and offspring in our study, ma-
ternal factors are still a major driver of the offspring
microbiome. We therefore hypothesized that maternal
parity could influence the offspring microbiome in ways
that are independent of direct vertical transmission of
taxa. Consistent with this notion, maternal parity was
also significantly associated with piglet gut microbiome
composition (P = 0.002, R2=0.057) (Fig. 4B). The differ-
ences between offspring born to nulliparous versus high
parity mothers were driven by three bacterial taxa:
Akkermansia muciniphila, Prevotella stercorea, and
Campylobacter coli (Fig. 4C). Notably, litter size, litter
weight at birth, and sow interpregnancy interval were
not different between parity groups, suggesting that
these factors do not contribute to the differences ob-
served in gut microbiome composition between animals
born to nulliparous versus high parity sows (SFig 9).
Moreover, none of the bacterial species identified in this
analysis were found to be differentially abundant be-
tween nulliparous and high parity sows, arguing that
parity impacts both maternal and offspring gut microbial
communities, but that the mechanisms by which this oc-
curs likely differs.

Discussion
Longitudinal analysis of the gut microbiome in 34
mother sows revealed a shift in the community types
present during gestation. A limited number of longitu-
dinal studies have been conducted during pregnancy in
humans, with one study reporting a dramatic shift in
community composition from first to third trimester
[16], while another showed remarkably stable commu-
nity structure in the gut, vagina, and oral cavity through-
out gestation [2]. These conflicting results highlight that
additional data from well-controlled animal studies, as
well as from diverse human populations—such as the
ongoing Multi-Omic Microbiome Study: Pregnancy Ini-
tiative (MOMS-PI) [3]—are needed to generate a more
complete picture of host-microbiome interactions during
pregnancy. Recent efforts to consider statistical methods
for analysis of longitudinal microbiome data and
normalization for cross-study comparisons [36, 37], to-
gether database efforts that enable integration of large
volumes microbiome data [38], all constitute important
developments that will enhance our ability to integrate
and mine microbiome data from different types of
maternal-infant microbiome studies.
Our results show that the maternal gut microbiome

undergoes consistent changes during pregnancy. Al-
though stool samples were first collected from sows
when they were confirmed pregnant at ~37 days post-
mating, rather than prior to or at the start of pregnancy,

our data suggest that the gut microbiome remains simi-
lar throughout the first two months of pregnancy (Fig.
1C, SFig 1A, Fig. 3A). Importantly, data from swine fetal
development studies point to major shifts in fetal growth
and metabolism that occur within our sampling period.
For example, the results of our DMM analysis showed a
marked shift in microbiome composition starting around
day 72 (Fig. 1C), which is coincident with remarkable
metabolic shifts in both the sow and the developing
fetus, including a dramatic acceleration of fetal weight
gain, as well as accumulation of fetal protein and sow
mammary gland protein content [39]. Whether the sow
microbiome, and pregnancy- or parity-associated
changes in the microbiome, play any role in these pro-
cesses merits further investigation.
Our data show that parity modulates gut microbiome

maturation during gestation in pigs. One confounding
factor in the study of parity in both our experiments as
well as in human studies is age, since humans and ani-
mals of higher parity are also usually older. In addition,
pigs are highly social and establish a social hierarchy
based on age. Consequently, nulliparous pigs are not
only the youngest animals but are also at the bottom of
the social rank and would normally be subject to bully-
ing by older animals of higher parity. To mitigate un-
wanted effects of social hierarchy and ensure maximum
animal welfare, nulliparous and multiparous sows were
separated by a fence during gestation (see the “Methods”
section). However, several lines of evidence argue against
age being a major contributor to the differences ob-
served in our parity analysis. First, we showed that gut
microbiome composition at day 37 of pregnancy is simi-
lar between nulliparous (younger) and multiparous
(older) animals, despite the fact that these groups have
been separated for approximately five weeks (Fig. 3A, C).
Furthermore, DMM analysis also showed that most ani-
mals, regardless of parity and age, occupy the same clus-
ter at day 37. Second, approximately 5 months of age
typically separate sows that differ by a single parity, yet
the NMIT analysis revealed that the largest change in
microbiome trajectory occurs between nulliparous and
single parity sows (SFig 2), rather than between the very
youngest and oldest animals. Lastly, the impact of parity
on the microbiome is evident even when the nulliparous
(youngest) animals are excluded—high and low parity
animals are not separated by the fence, yet they still dif-
fer in microbiome maturation during pregnancy (Fig. 2,
SFig 1B).
Despite the fact that anaerobic bacteria identified in

our piglet gut samples, including Bacteroides species and
the sulfate reducer Disulfovibrio piger [40], are common
members of the gut microbiome, our paired metage-
nomic analysis of maternal-offspring “quadrads” sug-
gested that the piglet neonatal gut microbiome does not
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originate from the maternal gut (SFigs 3, 4, 5). However,
we examined piglets only at a single time point, and the
reference-based metagenomic analysis we used may lack
the sensitivity to detect low abundance organisms; thus,
we cannot rule out the possibility that some early colo-
nizers of the infant gut were inherited from the maternal
gut. Nevertheless, the apparent lack of shared strains or
species between the maternal gut microbiome at partur-
ition and the piglet gut at day 10 of life suggests that
early gut colonizers are acquired, at least in part, from
other maternal or environmental sources. Interestingly,
numerous Lactobacillus species as well as Clostridium
clostridioforme were detected in the piglet gut, but were
absent from the sow gut, and have been observed in hu-
man vaginal microbiome studies [41, 42]. Subdoligranu-
lum, a genus found in nearly all our piglets, has been
identified in breast milk microbiomes [43]. In humans,
breastfeeding is a source of early infant gut microbes
[44] and is a significant predictor of early childhood gut
microbiota [45] and immunity [46]. Parity has been
shown to affect the lipid and protein content in human
breast milk [47], as well as the microbiota composition
of cow colostrum [48]. Taken together, these data sug-
gest that the vaginal mucosa and breast milk should be
explored for their potential as early sources of microbial
colonization of the piglet gut, and our piglet data raise
the possibility that one or both sites may be influenced
by parity. In addition, a multi-niche analysis of the far-
rowing environment may yield insight into the origin of
specific bacterial strains found in the piglet gut but not
the maternal gut.
We identified several parity-associated bacterial spe-

cies in the maternal gut at the end of gestation, as well
as in the piglet gut. Among these were Treponema, the
top taxon in our DMM model of the gut microbiome
during gestational (Fig. 1D), and specifically the species
T. bryantii which was identified as enriched in high par-
ity pigs by metagenomic sequencing (Fig. 3D). Although
little is known about this spirochete, T. bryantii was re-
cently linked to increased feed efficiency in sows [49].
Lactobacillus levels ere peaked in DMM cluster 7 (Fig.
1E), the cluster occupied by most nulliparous animals at
the end of gestation (Fig. 2G). Two species, L. reuteri
and L. amylovorus, were enriched among nulliparous an-
imals (Fig. 3D), and both are common probiotic strains
associated with weight and fat gain, and enhanced im-
mune function in sows and piglets [50–53]. We also
found that piglets born to high parity sows had increased
relative abundance of Akkermansia muciniphila (Fig.
4C), a species recently identified in human breast milk
and breast tissue [54] and which has been widely linked
to reduced risk of obesity and metabolic disease in
humans [55, 56] and more recently to reduced adiposity
in pigs [57]. Collectively, these data support a model

whereby parity-associated changes in the microbiome
have the potential to alter maternal or infant
metabolism.
Given the causal role for the microbiome in a wide

range of human diseases, our data suggest that the
microbiome merits further exploration as a possible con-
tributing factor to parity-associated outcomes in mater-
nal and infant health. For example, it is well established
that parity reduces the risk for estrogen receptor- and
progesterone receptor-positive breast cancers [58–60]
and ovarian cancer [61], but increases the risk of dental
disease [12] and dementia [62]. Although the mecha-
nisms underlying these parity-associated effects remain
unclear, studies point to long-term alterations in hor-
mones and systemic inflammatory mediators as possible
contributors [63–65]. Just as we observed an impact of
parity on the offspring gut microbiome, so too are there
well-documented effects of parity on infant morbidity
and mortality. Offspring born to nulliparous mothers
have reduced birth weight and higher mortality rates
[60] and are at increased risk of childhood obesity and
metabolic disease [66]. Whether and how these parity-
associated phenotypes and diseases are linked to the
microbiome remains an important and unresolved ques-
tion. Future studies exploring this topic will be valuable
not only in improving agriculture, but also for advancing
microbiome-based diagnostics and therapies to improve
maternal-infant health in humans.

Conclusions
Pregnancy history affects both the maternal gut micro-
biome during gestation and the infant gut microbiome
postpartum. Sources other than the maternal gut are po-
tential contributors to the early piglet microbiome. Par-
ity influences the relative abundance of key bacterial
species associated with obesity and altered metabolism,
including Akkermansia muciniphila, Treponema bryan-
tii, and several Lactobacillus species.

Methods
Animal husbandry and sample collection
Fecal samples for our Pig Pregnancy and Parity (P3)
Microbiome study were acquired from animals housed
at the Penn Vet Swine Teaching and Research Center.
The facility was environmentally controlled and main-
tained high standards of hygiene. Study animals were se-
lected from one of two adjacent pens of gestating sows
in the barn’s gestation area. The first pen housed a
group of 130 gestating parous sows (having previously
birthed a litter) that were maintained in a single large
dynamic group and fed by two electronic sow feeding
(ESF) stations (Compident VII, Schauer Agrotronics,
Prambachkirchen, Austria). The second pen housed a
similar, but smaller group, of 65 nulliparous sows (not
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having previously birthed a litter) in a single dynamic
group and were fed by a single ESF station. The smaller,
younger animals were separated from the older sows to
help mitigate the stress and other unwanted impact of
conspecific aggression that arises in the establishment of
a social hierarchy as older sows tend to bully the youn-
ger animals. The pens adjoined and created a near iden-
tical physical environment for the sows but were
separated by a fence line that prevented direct nose to
nose contact between groups. Both groups were sub-
jected to similar management and husbandry practices
although the larger group had access to straw bedding
and an outdoor concrete loafing area. These pens pro-
vide animals with a space allowance of at least 2.0 m2/
head. Weaned, mated animals were added to the dy-
namic groups weekly at 8 days post-weaning. A similar
number of near-term pregnant animals (>day 110 of ges-
tation) were removed from the gestation pens and trans-
ferred to the farrowing and lactation area of the barn.
Sows gave birth in individual pens (4.1 m2) equipped
with a hinged farrowing crate. This crate initially pro-
vided protection to the newborn piglets but was opened
at 10 to 14 days post-partum to provide the sow with
additional mobility. Sows in the birthing pens only came
into contact with their own piglets, and the newborn
piglets only contacted one another and their mother for
the duration of lactation. Piglets were weaned ranging
from 28 to 35 days of age. Weaned sows were moved to
the breeding area of the barn and housed in individual
stalls while they were bred via post-cervical artificial in-
semination prior to returning to the gestation pens. The
birthing pens were pressure washed with hot water and
detergent to remove all organic matter and then disin-
fected prior to refilling with another near-term sow. The
number of piglets per litter, interpregnancy interval, and
litter birth weight were similar across all parity groups
(SFig 9).
All sows were fed a similar standard corn–soy diet

meeting or exceeding NRC [67] standards for gestating
and lactating sows with a metabolizable energy of 3197.2
kcal/kg. The quantity of feed each sow received was
based on both stage of gestation or lactation and body
condition. Animals with less condition (skinnier) re-
ceived larger quantities of feed than animals with more
condition (fatter). Body condition of animals was scored
at placement into the gestation pen and then reevaluated
at ~30-day intervals. Standard production metrics were
collected for each sow and their litter including sow age
and parity (number of previous pregnancies resulting in
a birth). Sows were confirmed pregnant at ~37 days
post-mating via real-time ultrasonography. In order to
determine how the gut microbiome changed throughout
pregnancy, a fecal sample was collected from each preg-
nant sow at the time of pregnancy confirmation (37 days

of gestation) and every 7 days until delivery (~114 days
of gestation), for a total of 12 fecal samples per sow. To
determine the effect of maternal parity and gut micro-
biome composition on the gut microbiome composition
of offspring, fecal swabs were taken from piglets 10 days
after birth. Fecal samples and swabs were stored at
−80°C until DNA extraction.

16S rRNA gene sequencing and processing
16S rRNA gene sequencing was carried out on stool
samples collected weekly from 34 sows throughout ges-
tation. This group included 9 zero parity animals (no
previous pregnancies), 13 low parity animals (1–3 previ-
ous pregnancies), and 12 high parity animals (4–7 previ-
ous pregnancies). Samples were obtained from at least
10 unique time points from each sow, with most sows
represented by all 12 sampling times (weekly from day
37 to 114), for a total of 390 total fecal samples. DNA
was extracted from fecal samples using Qiagen Power-
Soil DNA extraction kit. 16S rRNA sequencing was per-
formed as described previously [68]. Briefly, the V4
region of the 16S rRNA gene was amplified using PCR
using Accuprime Pfx Supermix and custom primers for
30 cycles [69]. Quantification and clean-up of post-PCR
products was carried out using PicoGreen reagent and
AMPureXP beads, respectively. Pooled PCR libraries
were quantified and sized using a Qubit 2.0 and Tapesta-
tion 4200, respectively. 250bp paired-end sequencing
was performed using an Illumina MiSeq. The QIIME2
pipeline [70] was used to process and analyze 16S se-
quencing data using qiime2 version 2019.7.0. Samples
were demultiplexed using q2-demux and denoised using
Dada2 [71]. Sequences were aligned using maaft [72],
and phylogenetic trees were reconstructed using fasttree
[73]. Weighted UniFrac [74] and Bray-Curtis [75] beta
diversity metrics were estimated using q2-core-metrics-
diversity after samples were rarefied to 10000 reads per
sample, and p values were adjusted for multiple hypoth-
esis testing using Benjamini-Hochberg (B-H) false dis-
covery rate (FDR) corrections [76]. Taxonomy was
assigned to sequences using q2-feature-classifier classify-
sklearn [77] against the Silva rRNA reference database
[78, 79]. Taxa were collapsed to the genus level, when
possible. OTUs with less than 0.1% average relative
abundance across samples, and those present in less
than half of samples, were removed.

Longitudinal data analysis
The qiime2-longitudinal plugin was used to analyze
weekly sampled microbiome data from each sow [80]. A
maturity index was calculated using 60% of the samples
as training data to compare the expected and predicted
days of gestation using qiime longitudinal maturity-
index [31, 32]. To determine whether parity affects
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microbiome remodeling during pregnancy, the change in
Bray-Curtis and weighted UniFrac beta diversity metrics
over time were determined using qiime longitudinal
first-distances and qiime longitudinal linear-mixed-
effects. Non-parametric microbial interdependence tests
(NMIT) were performed using qiime longitudinal nmit
[81]. NMIT calculates correlations between each pair of
taxa for each individual over time, allowing direct, quan-
titative comparisons of microbial interdependence be-
tween individuals as opposed to between timepoints
within an individual. Dirichlet multinomial mixtures
(DMM) was used to model the relationships between
microbial communities as determined by 16S sequencing
using R code modified from Stewart et al. 2018 [82, 83],
and DMM clusters (community types) were determined
based on lowest LaPlace approximation. The proportion
of samples occupying a DMM cluster at each timepoint
was plotted to visualize changes in community types
over time during pregnancy. SplinectomeR was used to
determine whether the relative abundance of key bacter-
ial taxa changed during the course of pregnancy and to
determine whether the change in relative abundance was
affected by parity [84].

Shotgun metagenomic sequencing and analysis
DNA extracted from fecal samples obtained from 18 of
the study animals early (day 37) and late in gestation
(day 114) were used for shotgun metagenomics. This
subset included 7 zero parity sows and 11 high parity
sows (parity ≥3) (n = 36 samples). DNA was also ex-
tracted from fecal swabs collected from 3 piglets from
each of the 18 sows (n = 54). All DNA extractions were
carried out using the Qiagen PowerSoil DNA extraction
kit, and sequencing libraries (n = 90) were prepared fol-
lowing Illumina’s Nextera XT protocol. Sequencing was
performed on a NextSeq500 to generate 150bp single-
end reads. Reads were trimmed using trimmomatic ver-
sion 0.33 [85], and the quality was confirmed using
FastQC. MetaPhlAn version 2.6.1 was used to determine
the relative abundance of microbial taxa in each sample,
collapsed to species [86]. The correlation between vari-
ables such as parity and microbiota composition was de-
termined using PERMANOVA as implemented in the
vegan package [87] in R [88]. Differentially abundant
taxa were determined using LDA effect size (LEfSe) [89],
and p values were adjusted for multiple hypothesis test-
ing using B-H FDR corrections in R. Nonmetric multidi-
mensional scaling (NMDS) plots comparing sow and
piglet microbiome composition were generated using
the vegan package in R. Plots were visualized using
ggplot2 [90], patchwork [91], and ggthemes [92]. Heat-
map was generated using hclust2 (available at https://
github.com/SegataLab/hclust2). To determine whether
species found in the piglet gut originated from the

maternal gut, markers from Escherichia coli, a microbe
found in high abundance across sow and piglet guts,
were extracted using StrainPhlAn [35]. Samples for
which multiple strains were suspected were removed
from the analysis. A neighbor-joining phylogenetic tree
was reconstructed with 1000 bootstrap replicates using
MEGA7 [93] and visualized using FigTree version 1.4.4
(available at http://tree.bio.ed.ac.uk/software/figtree/).
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Additional file 1: Supplemental Figure 1. Gut microbiota
compositional changes more predictably after day 72 of pregnancy. A
maturity index trained on 60% of the animals and tested on the
remaining 40% from A) days 37 to 72 shows that the amount of time of
gestation can be predicted (P = 8.9e-4) but with low accuracy (R2=0.12)
and from B) days 79-114 shows that the amount of time of gestation can
be predicted (P = 8.5e-7) with higher accuracy (R2=0.25).

Additional file 2: Supplemental Figure 2. The most significant
difference between gut microbiota trajectories lie between nulliparous
and multiparous animals. A Principal Coordinate Analysis (PCoA) plot of
the NMIT data shows how the gut microbiota trajectory differs between
animals of different parities across the first two axes. Each point
represents an individual’s trajectory during gestation. Each point is a
number which represents the parity, and the color of each number
represents the parity bin (zero, low, or high).

Additional file 3: Supplemental Figure 3. Shannon alpha diversity
increases throughout pregnancy across all parity groups. Shannon alpha
diversity was calculated for each sample at each time point. Alpha
diversity trends upwards over the course of pregnancy in all three parity
groups. Parity does not associate with alpha diversity.

Additional file 4: Supplemental Figure 4. Weighted UniFrac beta
diversity shows that parity affects the gut microbiota trajectory during
gestation. A) Weighted UniFrac beta diversity was calculated between
each sample and the Day 37 sample from the same individual. B)
Weighted UniFrac beta diversity was calculated between each sample
and the previous week’s sample from the same individual.

Additional file 5: Supplemental Figure 5. The relative abundance of
key bacterial taxa changes throughout gestation. A spline-fitting model
was performed for the top five most important taxa from the DMM (Fig
1D) and the top five most important taxa from the maturity index (Fig
1B). The relative abundance of all ten taxa changed significantly during
gestation (P < 0.01). Throughout gestation, the relative abundance of two
taxa, the genus Phascolarctobacterium and the family Rikenellaceae, were
significantly associated with parity (P < 0.05).

Additional file 6: Supplemental Figure 6. Sows and piglets have
significantly different gut microbiome compositions. Shotgun
metagenomic sequencing was performed for fecal samples from 18
mother sows that were collected at days 37 and 114 of gestation, and
from fecal swabs from 3 offspring of each pig collected 10 days after
delivery. A) An NMDS plot representing the Bray-Curtis beta diversity be-
tween the 90 samples (36 sow and 54 piglet) was generated. The micro-
biome compositions of sows are significantly different from that of
piglets (P = 1e-5). B) A heatmap was generated using the 32 bacterial
species with relative abundance >1% among either sows or piglets. For
each sample, the heatmap shows the relative abundance of each species.
Consistent with the NMDS plot, the heatmap separates into two major
phylogenetic branches, with sows on the left and piglets on the right.
Four sow samples cluster within the piglet branch and are noted below
the heatmap.

Additional file 7: Supplemental Figure 7. The relative abundance of
bacterial taxa in a sow does not correlate with the relative abundance of
that taxa in her offspring. Linear regression analyses was performed for
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each of the 8 bacterial species with average relative abundance >1%
across all samples and that were present in at least two-thirds of all sam-
ples. For each piglet, the relative abundance of each bacterial species in
its mother at Day 114 was plotted (X-axis) against the relative abundance
of that species in the piglet 10 days after delivery (Y-axis). Fecal swabs
from three piglets from each sow were sequenced. There were no signifi-
cant correlations between bacterial species in mother and offspring in
any of the eight species (Adj. P > 0.3).

Additional file 8: Supplemental Figure 8. There is no evidence that
Escherichia coli in piglets were inherited from the maternal gut. A
neighbor-joining phylogeny was reconstructed using 34 E. coli strains ex-
tracted from the shotgun metagenomic sequencing data from piglets
and sows likely harboring only a single E. coli strain. Three sets of E. coli
from different piglet-sow sets are highlighted in orange, cyan, and red.
For example, highlighted in orange, the 3 piglets born to Sow 214 share
similar E. coli genotypes, but immediately prior to birth (Day 114), the
sow’s gut harbored a very different E. coli genotype. Similarly, in cyan,
Sow 4074 and her piglet harbor different E. coli genotypes. Finally, in red,
three piglets of Sow 1962 harbor E. coli genotypes with a most recent
common ancestor at the root of the phylogeny. E. coli was chosen be-
cause it is the microbe found in the highest abundance across both sows
and piglets, thus providing the deepest coverage of strains.

Additional file 9: Supplemental Figure 9. The number of piglets per
litter, the interpregnancy interval, and litter weight are not significantly
different between parity groups. A) The number of piglets per litter
across parity groups is constant. B) The number of days between
weaning and insemination does not differ between parity groups. C) The
combined weight of each litter is not significantly different between
parity groups. All P-values are > 0.05.
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